Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 94: 104711, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37453364

RESUMEN

BACKGROUND: Cognitive deficits are among the main disabling symptoms in COVID-19 patients and post-COVID syndrome (PCS). Within brain regions, the hippocampus, a key region for cognition, has shown vulnerability to SARS-CoV-2 infection. Therefore, in vivo detailed evaluation of hippocampal changes in PCS patients, validated on post-mortem samples of COVID-19 patients at the acute phase, would shed light into the relationship between COVID-19 and cognition. METHODS: Hippocampal subfields volume, microstructure, and perfusion were evaluated in 84 PCS patients and compared to 33 controls. Associations with blood biomarkers, including glial fibrillary acidic protein (GFAP), myelin oligodendrocyte glycoprotein (MOG), eotaxin-1 (CCL11) and neurofilament light chain (NfL) were evaluated. Besides, biomarker immunodetection in seven hippocampal necropsies of patients at the acute phase were contrasted against eight controls. FINDINGS: In vivo analyses revealed that hippocampal grey matter atrophy is accompanied by altered microstructural integrity, hypoperfusion, and functional connectivity changes in PCS patients. Hippocampal structural and functional alterations were related to cognitive dysfunction, particularly attention and memory. GFAP, MOG, CCL11 and NfL biomarkers revealed alterations in PCS, and showed associations with hippocampal volume changes, in selective hippocampal subfields. Moreover, post mortem histology showed the presence of increased GFAP and CCL11 and reduced MOG concentrations in the hippocampus in post-mortem samples at the acute phase. INTERPRETATION: The current results evidenced that PCS patients with cognitive sequalae present brain alterations related to cognitive dysfunction, accompanied by a cascade of pathological alterations in blood biomarkers, indicating axonal damage, astrocyte alterations, neuronal injury, and myelin changes that are already present from the acute phase. FUNDING: Nominative Grant FIBHCSC 2020 COVID-19. Department of Health, Community of Madrid. Instituto de Salud Carlos III through the project INT20/00079, co-funded by European Regional Development Fund "A way to make Europe" (JAMG). Instituto de Salud Carlos III (ISCIII) through Sara Borrell postdoctoral fellowship Grant No. CD22/00043) and co-funded by the European Union (MDC). Instituto de Salud Carlos III through a predoctoral contract (FI20/000145) (co-funded by European Regional Development Fund "A way to make Europe") (MVS). Fundación para el Conocimiento Madri+d through the project G63-HEALTHSTARPLUS-HSP4 (JAMG, SOM).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Hipocampo/patología , Atrofia , Síndrome , Biomarcadores
2.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296635

RESUMEN

The implantation of oligodendrocyte precursor cells may be a useful therapeutic strategy for targeting remyelination. However, it is yet to be established how these cells behave after implantation and whether they retain the capacity to proliferate or differentiate into myelin-forming oligodendrocytes. One essential issue is the creation of administration protocols and determining which factors need to be well established. There is controversy around whether these cells may be implanted simultaneously with corticosteroid treatment, which is widely used in many clinical situations. This study assesses the influence of corticosteroids on the capacity for proliferation and differentiation and the survival of human oligodendroglioma cells. Our findings show that corticosteroids reduce the capacity of these cells to proliferate and to differentiate into oligodendrocytes and decrease cell survival. Thus, their effect does not favour remyelination; this is consistent with the results of studies with rodent cells. In conclusion, protocols for the administration of oligodendrocyte lineage cells with the aim of repopulating oligodendroglial niches or repairing demyelinated axons should not include corticosteroids, given the evidence that the effects of these drugs may undermine the objectives of cell transplantation.


Asunto(s)
Metilprednisolona , Oligodendroglía , Humanos , Metilprednisolona/farmacología , Vaina de Mielina , Axones , Diferenciación Celular
3.
Cells ; 11(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36231058

RESUMEN

Neurological disorders are a leading cause of morbidity worldwide, giving rise to a growing need to develop treatments to revert their symptoms. This review highlights the great potential of recent advances in cell therapy for the treatment of neurological disorders. Through the administration of pluripotent or stem cells, this novel therapy may promote neuroprotection, neuroplasticity, and neuroregeneration in lesion areas. The review also addresses the administration of these therapeutic molecules by the intranasal route, a promising, non-conventional route that allows for direct access to the central nervous system without crossing the blood-brain barrier, avoiding potential adverse reactions and enabling the administration of large quantities of therapeutic molecules to the brain. Finally, we focus on the need to use biomaterials, which play an important role as nutrient carriers, scaffolds, and immune modulators in the administration of non-autologous cells. Little research has been conducted into the integration of biomaterials alongside intranasally administered cell therapy, a highly promising approach for the treatment of neurological disorders.


Asunto(s)
Materiales Biocompatibles , Enfermedades del Sistema Nervioso , Administración Intranasal , Materiales Biocompatibles/uso terapéutico , Encéfalo , Humanos , Enfermedades del Sistema Nervioso/terapia , Células Madre
4.
Life (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35454965

RESUMEN

Multiple sclerosis (MS) is a chronic degenerative autoimmune disease of the central nervous system that causes inflammation, demyelinating lesions, and axonal damage and is associated with a high rate of early-onset disability. Disease-modifying therapies are used to mitigate the inflammatory process in MS but do not promote regeneration or remyelination; cell therapy may play an important role in these processes, modulating inflammation and promoting the repopulation of oligodendrocytes, which are responsible for myelin repair. The development of genetic engineering has led to the emergence of stable, biocompatible biomaterials that may promote a favorable environment for exogenous cells. This review summarizes the available evidence about the effects of transplantation of different types of stem cells reported in studies with several animal models of MS and clinical trials in human patients. We also address the advantages of combining cell therapy with biomaterials.

5.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34639079

RESUMEN

Oligodendrocyte precursor cell (OPC) migration is a mechanism involved in remyelination; these cells migrate from niches in the adult CNS. However, age and disease reduce the pool of OPCs; as a result, the remyelination capacity of the CNS decreases over time. Several experimental studies have introduced OPCs to the brain via direct injection or intrathecal administration. In this study, we used the nose-to brain pathway to deliver oligodendrocyte lineage cells (human oligodendroglioma (HOG) cells), which behave similarly to OPCs in vitro. To this end, we administered GFP-labelled HOG cells intranasally to experimental animals, which were subsequently euthanised at 30 or 60 days. Our results show that the intranasal route is a viable route to the CNS and that HOG cells administered intranasally migrate preferentially to niches of OPCs (clusters created during embryonic development and adult life). Our study provides evidence, albeit limited, that HOG cells either form clusters or adhere to clusters of OPCs in the brains of experimental animals.


Asunto(s)
Encéfalo/fisiología , Enfermedades Desmielinizantes/terapia , Células Precursoras de Oligodendrocitos/citología , Oligodendroglioma/química , Remielinización , Células Madre/citología , Administración Intranasal , Animales , Encéfalo/citología , Diferenciación Celular , Células Cultivadas , Humanos
6.
Int J Mol Sci ; 22(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068922

RESUMEN

INTRODUCTION: AQP4 (aquaporin-4)-immunoglobulin G (IgG)-mediated neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disease that affects the central nervous system, particularly the spinal cord and optic nerve; remyelination capacity in neuromyelitis optica is yet to be determined, as is the role of AQP4-IgG in cell differentiation. MATERIAL AND METHODS: We included three groups-a group of patients with AQP4-IgG-positive neuromyelitis optica, a healthy group, and a sham group. We analyzed differentiation capacity in cultures of neurospheres from the subventricular zone of mice by adding serum at two different times: early and advanced stages of differentiation. We also analyzed differentiation into different cell lines. RESULTS AND CONCLUSIONS: The effect of sera from patients with NMOSD on precursor cells differs according to the degree of differentiation, and probably affects oligodendrocyte progenitor cells from NG2 cells to a lesser extent than cells from the subventricular zone; however, the resulting oligodendrocytes may be compromised in terms of maturation and possibly limited in their ability to generate myelin. Furthermore, these cells decrease in number with age. It is very unlikely that the use of drugs favoring the migration and differentiation of oligodendrocyte progenitor cells in multiple sclerosis would be effective in the context of neuromyelitis optica, but cell therapy with oligodendrocyte progenitor cells seems to be a potential alternative.


Asunto(s)
Acuaporina 4/inmunología , Autoanticuerpos/inmunología , Diferenciación Celular , Sistema Nervioso Central/patología , Inmunoglobulina G/inmunología , Neuromielitis Óptica/inmunología , Células Precursoras de Oligodendrocitos/patología , Animales , Autoanticuerpos/sangre , Estudios de Casos y Controles , Sistema Nervioso Central/inmunología , Cerebelo/inmunología , Cerebelo/patología , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Neuromielitis Óptica/sangre , Neuromielitis Óptica/patología , Células Precursoras de Oligodendrocitos/inmunología
7.
Front Immunol ; 11: 2163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983181

RESUMEN

INTRODUCTION: The response to the SARS-CoV-2 coronavirus epidemic requires increased research efforts to expand our knowledge of the disease. Questions related to infection rates and mechanisms, the possibility of reinfection, and potential therapeutic approaches require us not only to use the experimental models previously employed for the SARS-CoV and MERS-CoV coronaviruses but also to generate new models to respond to urgent questions. DEVELOPMENT: We reviewed the different experimental models used in the study of central nervous system (CNS) involvement in COVID-19 both in different cell lines that have enabled identification of the virus' action mechanisms and in animal models (mice, rats, hamsters, ferrets, and primates) inoculated with the virus. Specifically, we reviewed models used to assess the presence and effects of SARS-CoV-2 on the CNS, including neural cell lines, animal models such as mouse hepatitis virus CoV (especially the 59 strain), and the use of brain organoids. CONCLUSION: Given the clear need to increase our understanding of SARS-CoV-2, as well as its potential effects on the CNS, we must endeavor to obtain new information with cellular or animal models, with an appropriate resemblance between models and human patients.


Asunto(s)
Betacoronavirus , Infecciones del Sistema Nervioso Central/complicaciones , Infecciones del Sistema Nervioso Central/inmunología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Modelos Animales de Enfermedad , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , Animales , COVID-19 , Línea Celular Tumoral , Infecciones del Sistema Nervioso Central/virología , Infecciones por Coronavirus/virología , Cricetinae , Células HEK293 , Humanos , Ratones , Organoides , Pandemias , Neumonía Viral/virología , SARS-CoV-2
8.
Brain Behav ; 10(1): e01498, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31837111

RESUMEN

INTRODUCTION: Several experimental studies have suggested the potential remyelinating effects of vitamin D (VitD) supplements regardless of the presence of VitD deficiency. This study aims to analyze neurogenesis in a model of toxic demyelination in order to evaluate the effects of VitD on demyelination and remyelination. MATERIAL AND METHODS: We used 24 male Wistar rats that had received surgical lesions to the corpus callosum and were injected with lysolecithin. Rats were divided into three groups: Group 1 included eight rats with lesions to the corpus callosum but not lysolecithin injections (sham group), group 2 included eight rats with lesions to the corpus callosum that were injected with lysolecithin (lysolecithin group), and group 3 included eight rats with lesions that were injected with lysolecithin and received VitD (VitD group). We analyzed neurogenesis both in the subventricular zone and at the lesion site. RESULTS: Administration of VitD promotes the proliferation and differentiation of neural stem cells in the subventricular zone and the migration of these cells to the lesion site in the corpus callosum; these cells subsequently differentiate into oligodendrocyte lineage cells and produce myelin basic protein. This phenomenon was not caused by microglial activation, which was less marked in rats receiving VitD. Megalin expression did not increase at the lesion site, which suggests that VitD is internalized by other mechanisms. CONCLUSION: Our results support the hypothesis that regardless of the presence of VitD deficiency, treatment with VitD may contribute to remyelination by promoting the proliferation of oligodendrocyte precursor cells.


Asunto(s)
Oligodendroglía/fisiología , Remielinización , Vitamina D , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Linaje de la Célula/efectos de los fármacos , Masculino , Esclerosis Múltiple/terapia , Células-Madre Neurales/fisiología , Ratas , Ratas Wistar , Remielinización/efectos de los fármacos , Remielinización/fisiología , Resultado del Tratamiento , Vitamina D/metabolismo , Vitamina D/farmacología , Vitaminas/metabolismo , Vitaminas/farmacología
9.
J Biomed Mater Res B Appl Biomater ; 107(5): 1598-1606, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30307108

RESUMEN

Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3 . After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598-1606, 2019.


Asunto(s)
Materiales Biocompatibles/química , Ácido Hialurónico/química , Accidente Cerebrovascular/tratamiento farmacológico , Andamios del Tejido/química , Tejido Adiposo/metabolismo , Animales , Materiales Biocompatibles/metabolismo , Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Ratones Desnudos , Modelos Animales , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo , Porosidad , Propiedades de Superficie , Trombosis/tratamiento farmacológico , Ingeniería de Tejidos
10.
J Stroke Cerebrovasc Dis ; 27(9): 2453-2465, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30029838

RESUMEN

INTRODUCTION: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS: A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS: The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS: These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.


Asunto(s)
Isquemia Encefálica/terapia , Trasplante de Células Madre , Tejido Adiposo/citología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Proliferación Celular , Modelos Animales de Enfermedad , Proteína Doblecortina , Gliosis/diagnóstico por imagen , Gliosis/metabolismo , Gliosis/patología , Gliosis/terapia , Humanos , Masculino , Ratones Desnudos , Microglía/metabolismo , Microglía/patología , Actividad Motora , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Neuronas/metabolismo , Neuronas/patología , Distribución Aleatoria , Trasplante de Células Madre/efectos adversos , Células Madre/citología , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...